3.7.84 \(\int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx\) [684]

3.7.84.1 Optimal result
3.7.84.2 Mathematica [A] (verified)
3.7.84.3 Rubi [A] (verified)
3.7.84.4 Maple [F]
3.7.84.5 Fricas [A] (verification not implemented)
3.7.84.6 Sympy [F]
3.7.84.7 Maxima [F(-2)]
3.7.84.8 Giac [A] (verification not implemented)
3.7.84.9 Mupad [F(-1)]

3.7.84.1 Optimal result

Integrand size = 19, antiderivative size = 138 \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}-\frac {15 b (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d^3}+\frac {5 b (a+b x)^{3/2} \sqrt {c+d x}}{2 d^2}+\frac {15 \sqrt {b} (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 d^{7/2}} \]

output
15/4*(-a*d+b*c)^2*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))*b^( 
1/2)/d^(7/2)-2*(b*x+a)^(5/2)/d/(d*x+c)^(1/2)+5/2*b*(b*x+a)^(3/2)*(d*x+c)^( 
1/2)/d^2-15/4*b*(-a*d+b*c)*(b*x+a)^(1/2)*(d*x+c)^(1/2)/d^3
 
3.7.84.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.90 \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\frac {\sqrt {a+b x} \left (-8 a^2 d^2+a b d (25 c+9 d x)+b^2 \left (-15 c^2-5 c d x+2 d^2 x^2\right )\right )}{4 d^3 \sqrt {c+d x}}+\frac {15 \sqrt {b} (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{4 d^{7/2}} \]

input
Integrate[(a + b*x)^(5/2)/(c + d*x)^(3/2),x]
 
output
(Sqrt[a + b*x]*(-8*a^2*d^2 + a*b*d*(25*c + 9*d*x) + b^2*(-15*c^2 - 5*c*d*x 
 + 2*d^2*x^2)))/(4*d^3*Sqrt[c + d*x]) + (15*Sqrt[b]*(b*c - a*d)^2*ArcTanh[ 
(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a + b*x])])/(4*d^(7/2))
 
3.7.84.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {57, 60, 60, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx\)

\(\Big \downarrow \) 57

\(\displaystyle \frac {5 b \int \frac {(a+b x)^{3/2}}{\sqrt {c+d x}}dx}{d}-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {5 b \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \int \frac {\sqrt {a+b x}}{\sqrt {c+d x}}dx}{4 d}\right )}{d}-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {5 b \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}}dx}{2 d}\right )}{4 d}\right )}{d}-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {5 b \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{b-\frac {d (a+b x)}{c+d x}}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{d}\right )}{4 d}\right )}{d}-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {5 b \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}}\right )}{4 d}\right )}{d}-\frac {2 (a+b x)^{5/2}}{d \sqrt {c+d x}}\)

input
Int[(a + b*x)^(5/2)/(c + d*x)^(3/2),x]
 
output
(-2*(a + b*x)^(5/2))/(d*Sqrt[c + d*x]) + (5*b*(((a + b*x)^(3/2)*Sqrt[c + d 
*x])/(2*d) - (3*(b*c - a*d)*((Sqrt[a + b*x]*Sqrt[c + d*x])/d - ((b*c - a*d 
)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt[b]*d^(3/ 
2))))/(4*d)))/d
 

3.7.84.3.1 Defintions of rubi rules used

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.7.84.4 Maple [F]

\[\int \frac {\left (b x +a \right )^{\frac {5}{2}}}{\left (d x +c \right )^{\frac {3}{2}}}d x\]

input
int((b*x+a)^(5/2)/(d*x+c)^(3/2),x)
 
output
int((b*x+a)^(5/2)/(d*x+c)^(3/2),x)
 
3.7.84.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 441, normalized size of antiderivative = 3.20 \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\left [\frac {15 \, {\left (b^{2} c^{3} - 2 \, a b c^{2} d + a^{2} c d^{2} + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )} x\right )} \sqrt {\frac {b}{d}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d^{2} x + b c d + a d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b}{d}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (2 \, b^{2} d^{2} x^{2} - 15 \, b^{2} c^{2} + 25 \, a b c d - 8 \, a^{2} d^{2} - {\left (5 \, b^{2} c d - 9 \, a b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{16 \, {\left (d^{4} x + c d^{3}\right )}}, -\frac {15 \, {\left (b^{2} c^{3} - 2 \, a b c^{2} d + a^{2} c d^{2} + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )} x\right )} \sqrt {-\frac {b}{d}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {b}{d}}}{2 \, {\left (b^{2} d x^{2} + a b c + {\left (b^{2} c + a b d\right )} x\right )}}\right ) - 2 \, {\left (2 \, b^{2} d^{2} x^{2} - 15 \, b^{2} c^{2} + 25 \, a b c d - 8 \, a^{2} d^{2} - {\left (5 \, b^{2} c d - 9 \, a b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{8 \, {\left (d^{4} x + c d^{3}\right )}}\right ] \]

input
integrate((b*x+a)^(5/2)/(d*x+c)^(3/2),x, algorithm="fricas")
 
output
[1/16*(15*(b^2*c^3 - 2*a*b*c^2*d + a^2*c*d^2 + (b^2*c^2*d - 2*a*b*c*d^2 + 
a^2*d^3)*x)*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 
4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b 
^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d^2*x^2 - 15*b^2*c^2 + 25*a*b*c*d - 8*a^2* 
d^2 - (5*b^2*c*d - 9*a*b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d^4*x + c*d 
^3), -1/8*(15*(b^2*c^3 - 2*a*b*c^2*d + a^2*c*d^2 + (b^2*c^2*d - 2*a*b*c*d^ 
2 + a^2*d^3)*x)*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)* 
sqrt(d*x + c)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) - 2*(2*b 
^2*d^2*x^2 - 15*b^2*c^2 + 25*a*b*c*d - 8*a^2*d^2 - (5*b^2*c*d - 9*a*b*d^2) 
*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d^4*x + c*d^3)]
 
3.7.84.6 Sympy [F]

\[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\int \frac {\left (a + b x\right )^{\frac {5}{2}}}{\left (c + d x\right )^{\frac {3}{2}}}\, dx \]

input
integrate((b*x+a)**(5/2)/(d*x+c)**(3/2),x)
 
output
Integral((a + b*x)**(5/2)/(c + d*x)**(3/2), x)
 
3.7.84.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((b*x+a)^(5/2)/(d*x+c)^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.7.84.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.46 \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\frac {\sqrt {b x + a} {\left ({\left (b x + a\right )} {\left (\frac {2 \, {\left (b x + a\right )} b^{2}}{d {\left | b \right |}} - \frac {5 \, {\left (b^{3} c d^{3} - a b^{2} d^{4}\right )}}{d^{5} {\left | b \right |}}\right )} - \frac {15 \, {\left (b^{4} c^{2} d^{2} - 2 \, a b^{3} c d^{3} + a^{2} b^{2} d^{4}\right )}}{d^{5} {\left | b \right |}}\right )}}{4 \, \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}} - \frac {15 \, {\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2}\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{4 \, \sqrt {b d} d^{3} {\left | b \right |}} \]

input
integrate((b*x+a)^(5/2)/(d*x+c)^(3/2),x, algorithm="giac")
 
output
1/4*sqrt(b*x + a)*((b*x + a)*(2*(b*x + a)*b^2/(d*abs(b)) - 5*(b^3*c*d^3 - 
a*b^2*d^4)/(d^5*abs(b))) - 15*(b^4*c^2*d^2 - 2*a*b^3*c*d^3 + a^2*b^2*d^4)/ 
(d^5*abs(b)))/sqrt(b^2*c + (b*x + a)*b*d - a*b*d) - 15/4*(b^4*c^2 - 2*a*b^ 
3*c*d + a^2*b^2*d^2)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x 
+ a)*b*d - a*b*d)))/(sqrt(b*d)*d^3*abs(b))
 
3.7.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{5/2}}{(c+d x)^{3/2}} \, dx=\int \frac {{\left (a+b\,x\right )}^{5/2}}{{\left (c+d\,x\right )}^{3/2}} \,d x \]

input
int((a + b*x)^(5/2)/(c + d*x)^(3/2),x)
 
output
int((a + b*x)^(5/2)/(c + d*x)^(3/2), x)